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Abstract The McNish and Lincoln (ML) method, introduced in 1949, was one
of the first attempts to produce mid-term forecasts of solar activity, up to 12
months ahead. However, it has been poorly described and evaluated in the past
literature, in particular its actual operational implementation by NOAA. Here,
we reconstruct the exact formulation of the method, as it was applied since
the early 1970s, and we provide a full mathematical derivation of the prediction
errors. For bench-marking the method, we also produce monthly predictions over
the past 190 years, from 1833 (Cycle 8) to 2023 (Cycle 25), and develop statistics
of the differences between the predictions and the observed 13-month smoothed
sunspot number (SSN) time series, according to the phase in the solar cycle. Our
analysis shows that the ML method is heavily constrained because it is primarily
based on the mean of all past cycles, which imposes a fixed amplitude and length
and suffers from a temporal smearing that grows towards the end of the solar
cycle. We find that predictions are completely unreliable in the first 12 months
of the cycle, and over the last two years preceding the ending minimum (around
130 months), and beyond this minimum. By contrast, in the course of the cycle
(months 18 to 65), ML predictions prove to be reliable over a time range of
up to 50 months (4.2 years), thus much longer than the 12-month conventional
range used so far. However, we find that predictions then suffer from systematic
under-(over-)estimates for cycles that have a higher (lower) amplitude than the
base mean cycle. Overall, we conclude that although the ML method provides
valid prediction errors, it suffers from strong limitations, with very little room
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for improvement, as it indifferently merges all past cycles into a single fixed
statistics.

Keywords: Sunspots: statistics, Solar cycle

1. Introduction

Our planet is permanently exposed to the influence of the Sun, which is modu-
lated by the 11-year cycle (Gray et al., 2010; Solanki, Krivova, and Haigh, 2013;
Chatzistergos, Krivova, and Yeo, 2023). Over recent decades, the development of
new technologies (manned and unmanned space missions, telecommunications,
space-based navigation systems) and the ever-growing dependency of modern
societies on electric energy have strongly increased the vulnerability of human
activities to variations of the solar magnetic activity. Many of the risks are not
only associated to the short-term predictions of individual solar eruptive events,
but on the mid- and long-term evolution of the occurrence rate and of the power
of such solar eruptions, and also on cumulative effects. This includes for instance,
the low-Earth orbit satellite lifetime (atmospheric drag), the maintenance of
major ground infrastructures (e.g. corrosion of pipelines) or health effects on
aviation staff (cumulated radiation doses).

Already by the mid-20th century, the necessity of mid- and long-term forecasts
of the evolution of the solar cycles prompted solar physicists to develop the first
operational prediction methods. Given the limited computing means and the
absence of any physical model of the sub-surface dynamo process producing the
magnetic fields that emerge at the solar surface, the first strategy consisted in
using the past history of the solar cycle. Those early methods are now included
in the “climatology” category of predictions (Pesnell, 2020; Petrovay, 2020), as
they rely on the statistics of past solar cycles to derive the most probable future
evolution, given the most recent observed progress of the current solar cycle.

The first operational methods were those of McNish and Lincoln (McNish
and Lincoln, 1949) (hereafter ML) and Waldmeier (Waldmeier, 1968), the latter
having actually its roots in a set of standard solar-cycle curves created in the
1930s (Waldmeier, 1935, 1937). As, at that time, the only multi-century record
of solar cycle is provided by the international sunspot number (Wolf, 1856;
Clette and Lefèvre, 2016) (hereafter SN), both methods are entirely based on
this reference time series. Likewise, the forecasts are also expressed in terms of
the SN, as the latter is also used as the standard measure of solar activity for
most long-term research applications.

The SN series is continuously maintained and extended by the World Data
Center (WDC) “Sunspot Index and Long-term Solar Observations” (SILSO;
https://www.sidc.be/SILSO/home), and following an end-to-end re-calibration
in 2015, it was recently upgraded to Version 2. As the details of the day-to-day
variations of solar activity have a strong random and local character unrelated
to the underlying global dynamo process (Dudok de Wit, Lefèvre, and Clette,
2016), and as those forecasts have a long-term scope, the SN is mostly used in
the form of 13-month smoothed monthly mean sunspot numbers (noted hereafter
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SSN), from which the times of the minima and maxima of the cycles are also
derived.

Since 1998, the time series of the group sunspot number (Hoyt and Schatten,
1998), which extends further back in time to the early 17th century, has become
available next to the SN. However, given the cruder observations and large
uncertainties in the early data, adding more solar cycles does not bring any
gain in predictive accuracy. Moreover, currently, only the SN is continuously
kept up to date until the present, which is necessary for operational predictions.
Therefore, even today, most prediction methods, which now call on a broader
array of more advanced approaches (Petrovay, 2020; Pesnell, 2020), still rely on
the homogeneous sunspot data after the mid-19th century, as provided by the
SN.

In this article, we will focus on the ML method, which was developed at
the National Bureau of Standards in 1949, in support to the NOAA (National
Oceanic and Atmospheric Administration) in the USA. The ML earned its im-
portance firstly because it led to all mid-term solar activity predictions published
during several decades in the monthly issues of the Solar Geophysical Data bul-
letin, an operational compilation of solar-terrestrial data that was published on a
monthly basis from 1955 to 2009 (ftp://ftp.ngdc.noaa.gov/STP/SOLAR DATA/
SGD PDFversion). For a few more years, until 2016, those predictions were
continued as an on-line product by the NGDC at NOAA (National Geophysical
Data Center, now part of the NCIE, National Centers for Environmental In-
formation), and then were taken over by the WDC SILSO, where they are still
produced on a monthly basis, next to two other prediction methods, together
with optimized versions of those predictions based on an adaptive Kalman filter
(Podladchikova and Van der Linden, 2012). They are distributed via the SILSO
Web site (https://www.sidc.be/SILSO/forecasts).

Given this longevity, many operational applications and sciences analyses
have been based on the ML method over a very long period. When revisiting
past published results, a proper understanding of the ML method is thus of-
ten required. Moreover, nowadays, in hindsight, this rather basic “climatology”
method forms an important benchmark for a large diversity of more advanced
prediction methods. Indeed, any new method must demonstrate in a quantitative
way to what extent it provides an effective improvement in precision and reliabil-
ity against baseline predictions from base classical methods like ML. Therefore,
a proper quantification of the performance of the ML method is necessary for
such bench-marking.

Unfortunately, very little was published about the ML method besides the
initial paper (McNish and Lincoln, 1949), which itself only describes the base
principle and a simple sample application that is different from the later opera-
tional implementation. A few more recent articles explored a bit the limitations
of the ML methods (Steward and Ostrow, 1970; Holland and Vaughan, 1984;
Hildner and Greer, 1990; Niehuss, H.C. Euler, and Vaughan, 1996; Fessant,
Pierret, and Lantos, 1996; Lantos, 2006), but they only studied the improve-
ments obtained by bringing partial modifications to the original method, for the
predictions of only one or two sample cycles.
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In order to fill those past gaps, the goal of this article is first to fully document
the primary operational ML method as implemented by the NGDC/NOAA,
based directly on the original FORTRAN programs that were communicated
by NOAA to us at WDC SILSO in 2016. In Section 2, we first retrace the
history of the ML method implementations. In Section 3, we then interpret
the actual formulae in relation with the original formulation by McNish and
Lincoln (1949). In Section 4, we provide a full mathematical derivation of the
error formula embedded in the programmed method. In Section 5, we extract
the key properties of the primary components of the ML predictions. After
generating a large set of predictions for all usable past solar cycles (number
8 to 25, with the conventional numbering where Cycle 1 is the one starting
in 1755), in Section 6, we then derive statistics of the differences between the
predictions and actual SSN values, in order to quantify the uncertainties of the
ML predictions and compare them to the above mathematical error. Finally, in
Sections 7 and 8, we draw interpretations and several key conclusions about the
temporal ranges over which the ML method is applicable and about irreducible
limitations imposed by the base underlying principles of this basic method.

2. A Brief History: The Original Version of the ML Method
and its Later Adaptations

2.1. The Original Foundations

In their original 1949 article, McNish and Lincoln introduce their two base
assumptions:

i) Given the cyclic nature of solar activity, the base prediction for any time in a
future cycle is simply the mean value of all observed past cycles at the same
relative time, counted from the start of each cycle. For their calculation, all
cycles are thus aligned on their starting minimum, with a common time axis,
counted relative to this starting date.

ii) This first mean estimate can be improved by adding a correction proportional
to the departure of the most recent observed SSN values of the current cycle
from the corresponding mean value, multiplied by a proportionality factor
determined by the method of least squares.

In order to achieve a predictive capability, they derive this correction factor
based on a least-square regression over all past pairs of years separated by the
same interval in all previous cycles. We refer the reader to the original text for
the details of this first implementation (McNish and Lincoln, 1949). In the next
Section, we will provide the complete formulation, but historically, the relevant
elements emerging from this original reference are the following.

In their initial formulation, McNish and Lincoln only worked with yearly mean
SNs and derived a prediction only for the next year after the current year. In
the final part of their article, where they apply the method to Cycle 18, they
also briefly experiment predictions based on shorter 3-month running means and
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obtained at 8-month intervals, in order to reduce the operational delay between
the time of the last available SSN and the time of prediction.

One of their main findings is that the best predictions are already obtained
by using only one past SN value in the current cycle, namely the 12-month mean
from the previous year (year−1). The inclusion of year−2 or year−3 does not
bring any significant gain in accuracy. This choice of basing predictions only on
the most recent observed SN will be kept in all subsequent implementations of
the ML method. Based on a Chi-square test, McNish and Lincoln also conclude
that historical SN values before Cycle 8 are less accurate and could degrade the
quality of the predictions. They thus only use data from Cycle 8 up to the last
cycle before the cycle in progress at the time of prediction. This choice of ignoring
all cycles before Cycle 8 also persisted in most subsequent implementations. We
finally point out that no calculation of the prediction error was made in this
initial article.

2.2. Multiple Adaptations

As the time delay of one year between successive predictions and a temporal
resolution of one year was too coarse for actual applications, in 1970, Steward and
Ostrow (1970) transformed the original ML formulation to produce predictions
at monthly intervals using monthly values the SSN. From then on, this became
the base method used by the Space Environment Services Center (SESC) and
later on by the NOAA and the Paris-Meudon Observatory. It survived up to
us nowadays through the heritage FORTRAN programs used by NGDC/NOAA
until 2016.

Though quite different from the original yearly scheme, this upgrade keeps
the two base principles. Each prediction is based only on a single starting value:
now the last monthly SSN value. In this new monthly scheme, predictions are
calculated for 18 months following this last available SSN value. As this SSN
series stops six months before the current month (last observed monthly SN)
due to the 13-month symmetrical smoothing window, this thus delivers 12-month
ahead predictions relative to the present, corresponding to the single one-year
ahead value of the initial ML implementation. In this case, the correction factor
is also derived by a least square regression over equivalent pairs of dates over
all past observed cycles, but for different times intervals (number of months)
instead of a single 1-year interval. Together with this upgrade, Steward and
Ostrow (1970) also included formulae giving the errors on the predictions and
on the correction coefficient itself. This is the implementation described in detail
in the rest of this article.

However, as new solar cycles elapsed, the ML predictions proved to fall short
of expectations. When applying the method to predict the maxima of cycles up
to Cycle 22 in the course of the ascending phase, Hildner and Greer (1990) found
clear limitations. In particular, while the maximum SN value can be reasonably
well predicted for most solar cycles, the ML method cannot reliably predict
the exact time of maximum. This failure indicates that the ML method cannot
account for the variable rise time and duration of solar cycles.

Starting from a similar idea, Niehuss, H.C. Euler, and Vaughan (1996) tried
to eliminate the differences in cycle lengths, which lead to a misalignment of
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the maxima and ending minima of the cycles. They chose to reduce all cycles
to a single common length, equal to the mean length of all past cycles, using
a Lagrangian interpolation scheme first introduced by Holland and Vaughan
(1984) for an application to the F10.7 radio flux time series. Moreover, in order to
avoid a discontinuity when passing a cycle minimum, they add a parallel scheme
that goes from maximum to maximum instead of from minimum to minimum.
Although they obtain a slight improvement of predictions around the time of
maximum and the first years of the declining phase of the cycle, their method
still involves a base mean cycle of fixed duration, which makes predictions of the
end of a cycle unrealistic.

Almost simultaneously, Fessant, Pierret, and Lantos (1996) also reduced all
past cycles to a common length using the interpolation method of Holland and
Vaughan (1984). In addition, instead of applying the method to the whole cycle,
they separated the ascending phases and descending phases of each cycle, and
equalized their lengths before applying separately the ML principles to each part.
This “split at maximum” approach brought a slight improvement, in particular
in the declining part of the cycle. By comparing the ML results with a new
method based on a neural network, they concluded on the superiority of the
new method, mainly for cycles with a peculiar evolution. Although the neural
network approach did not allow the authors to explain this better performance,
they speculated that it is mainly due to a better temporal flexibility compared
to the ML method.

We finally point out that those few past publications include only very limited
evaluations of the ML output, often training the method on part of the ongoing
cycle at the time of publication, or considering only one predictive applica-
tion (next cycle maximum). Here, before conducting a thorough assessment of
the reliability of ML predictions, we first describe in detail the mathematical
formulation of the method and the prediction error.

3. The Standard ML Method

3.1. The Mean Cycle

In the original method described by McNish and Lincoln (1949), the base element
of the prediction is a mean cycle derived by using all cycles before the current
(ongoing) one. In order to build this mean cycle, all cycles are aligned on the
month of the minimum, and the time increments (here, months) are counted
from this initial point. For each time increment, all values for that same relative
time in each solar cycle are then averaged.

Let Sn
m denote the value of the SSN at any month m of a Cycle n. The

sum starts at Cycle 8 up to c − 1, where c is the number of the last available
cycle, thus the current ongoing cycle for which the predictions are made. The
number of included cycles is thus Nc = c − 8. We assume that the sequence
Sn
m, (n = 8, 9, . . . , c− 1) is uncorrelated. The mean value, S̄m, of the SSN over
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Figure 1. Construction of the mean cycle S̄m. In the upper plot showing the SSN as a function
of time m in months, thin colored lines correspond to all past cycles since Cycle 8, aligned on
their starting minimum (m = 0), while the thick black line is the mean S̄m of all those cycles.
All curves extend beyond the ending minimum of the mean cycle, as predictions made at the
end of a solar cycle may extend beyond this mean minimum, and thus into the early rise of
the next cycle. The standard deviation of all cycles around the mean cycle σm is shown as
the gray-shading in the upper plot and as the black solid curve in the lower plot, with also its
relative value σm/S̄m, in percent of the mean-cycle value S̄m (blue dashed line).

those Nc cycles, for the mth month in the cycle, is estimated as

S̄m =
1

Nc

c−1∑
n=8

Sn
m (1)

The variance of Sn
m relative to this mean S̄m for month m is defined as

σ2
m =

∑c−1
n=8

(
Sn
m − S̄m

)2
Nc − 1

=

∑c−1
n=8 (S

n
m)

2 −Nc S̄
2
m

Nc − 1
(2)

where Sn
m is the SSN value at any month m of one Cycle n, and S̄m is the

corresponding mean SSN value at month m over all past solar cycles, in the
range (n = 8, 9, . . . , c− 1).

Rather than representing observational errors, this variance thus essentially
translates the full range of actual amplitudes of all solar cycles in our past record,
relative to the mean cycle. It thus gives a measure of how badly the mean cycle
can account for the wide diversity of actual cycles. As such, the mean cycle can
be considered as the zero-order guess, in the absence of any other information.

In Figure 1, we plot the mean cycle (thick black line) together with all in-
dividual cycles included in this global mean (thin lines). The mean cycle is
characterized by a broad and flat maximum peaking at SN=170 on month
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m = 47, and by an ending minimum at month m = 130 (10.8 years) with
SN=17, which is higher than the starting minimum at SN=9. In the lower
plot of Figure 1, we can observe that the standard deviation σm (black solid
line) largely follows the modulation of the mean cycle. Like the latter, it is
also larger at the ending minimum (m = 130) than at the starting minimum
(m = 0). Moreover, the maximum of σm after 130 months is higher than the
first maximum around 40 months.

3.2. The ML Correction Term

As the mean cycle is a poor representation of very diverse cycles, the ML method
aimed at improving this basic mean-cycle prediction by adding a correction term.
The latter is based on two elements:

• The actual deviation of the last observed SSN, at month s (starting month
for the predictions) relative to the corresponding value of the mean cycle

• A multiplicative gain factor based on a least-square linear regression be-
tween the values at the month of prediction p and at month s of the last
observed SSN, over all past observed cycles

As mentioned earlier in Section 2.2, we stress again here that the reference month
s of the last SSN precedes by 6 months the actual moment of the prediction
(last observed SN), due to the 13-month SSN smoothing window. Therefore,
in operational production, month s is not the actual present month. Still, as
anyway s corresponds to the last SSN used in the calculation and as all results are
independent of this practical delay, for simplicity, we shall treat ”s” as the current
month in all following explanations, skipping this fixed 6-month operational shift.

Let us introduce the following residuals, denoting the difference between the
SSN value and the value of the mean cycle at the reference month m = s and
the predicted month m = p for Cycle n :

∆n
s = Sn

s − S̄s, (n = 8, 9, ..., c− 1) (3)

∆n
p = Sn

p − S̄p, (n = 8, 9, ..., c− 1) (4)

Then, we can form the following linear regression equation between ∆n
s and

∆n
p

∆n
p = asp + ksp∆

n
s + εnsp (5)

Here, εnsp is the uncorrelated noise representing the model error.
Let us introduce the vector of differences at month p

Y =
∣∣∆8

p ∆9
p · · · ∆c−1

p

∣∣T (6)

the vector of estimated parameters

Xsp =

∣∣∣∣aspksp

∣∣∣∣ (7)
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the source-data matrix

H =

∣∣∣∣ 1 . . . 1
∆8

s . . . ∆c−1
s

∣∣∣∣T (8)

and the noise vector

ε =
∣∣ε8sp ε9sp · · · εc−1

sp

∣∣T (9)

Then, the regression Equation (5) can be rewritten as

Y = HXsp + ε (10)

The variance of the noise εnsp, noted (σε
sp)

2, represents the scatter around the
regression line.

We determine the estimate of vector Xsp with unknown parameters asp and
ksp on the basis of the least-square method (Seber and Lee, 2003)

X̂sp =

∣∣∣∣âspk̂sp

∣∣∣∣ = (HTH
)−1

HTY (11)

Then, Equation (11) can be rewritten as

X̂sp =

∣∣∣∣âspk̂sp

∣∣∣∣ = DY (12)

Here, the matrix D is represented by

D =
(
HTH

)−1
HT =

∣∣∣∣∣∣
1
Nc

. . . 1
Nc

∆8
s∑c−1

n=8(∆
n
s )

2 . . .
∆c−1

s∑c−1
n=8(∆

n
s )

2

∣∣∣∣∣∣ (13)

Taking into account Equations (4) and (6), the first element of vector X̂sp is
estimated as

âsp =
1

Nc

c−1∑
n=8

(
Sn
p − S̄p

)
(14)

Given the definition of the mean cycle (Equation (1), here with m = p), âsp = 0.
Therefore, in the original formulation adopted by McNish and Lincoln (1949),
by construction, the intercept of the regression is always through the origin, and
only one parameter is determined by the regression: the slope k̂sp, defined as

k̂sp =

∑c−1
n=8 ∆

n
s∆

n
p∑c−1

n=8 (∆
n
s )

2 (15)

or, by re-developing explicitly

k̂sp =

∑c−1
n=8

(
Sn
s − S̄s

) (
Sn
p − S̄p

)∑c−1
n=8

(
Sn
s − S̄s

)2 (16)
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Thus, the vector X̂sp is estimated as

X̂sp =

∣∣∣∣âspk̂sp

∣∣∣∣ =
∣∣∣∣∣ 0∑c−1

n=8 ∆n
s ∆

n
p∑c−1

n=8(∆
n
s )

2

∣∣∣∣∣ (17)

Combining this result with Equations (4) and (5), we can now derive the
prediction for month p in Cycle c, based on reference month s:

Ŝc
sp = S̄p + k̂sp

(
Sc
s − S̄s

)
(18)

where

• Ŝc
sp is the improved prediction for month p in current Cycle c

• S̄p is the mean-cycle value at month p, the target month of the prediction
(from Equation (1) with m = p)

• Sc
s is the last observed SSN in the current cycle (acting as reference starting

month s for predictions)
• S̄s is the mean-cycle value at the reference month s (Equation (1) with

m = s)

• k̂sp is the correction coefficient for the pair of months s – p (Equation (16)).

Equations (18) and (16) that we derived here match the calculations coded in
the NGDC/NOAA heritage programs, confirming their exact derivation.

Two examples of predictions are illustrated in Figure 2. Those plots show how
the correction term in Equation (18) ensures a seamless extension of the latest
observed monthly SSN (black dot) by the adjusted predictions (red curve). As the

correction coefficient k̂sp decreases with p, the predictions progressively converge
towards the mean cycle S̄p (blue dotted line), which largely remains the ML base
prediction in all cases for large p ahead times.

The bottom plot (b) in Figure 2 is actually the latest ML operational predic-
tion for Cycle 25 (at the time of manuscript submission), released in January
2024 with last SSN in June 2023. It places the upcoming Cycle 25 maximum in
August 2024 at SN = 140 ± 32, and the end of the cycle in October 2030, thus
giving a cycle length of 130 months (10.8 years). As we will show later in our
analysis, the exact match of this length with the duration of the mean cycle does
not come by chance, but illustrates the dominant role of the mean cycle, with
its fixed duration, in the ML method.

3.3. Some Insights on the ML Prediction Formula

The above prediction formulae actually correspond to the original Equation (1)
and the array of equations of page 2 in McNish and Lincoln (1949), for the
case of a single past reference SSN value. They thus implement the simplest
version of the 1949 method. However, while the original method worked with
one annual mean value, this version works on a monthly scale, with a variable
time separation between the predicted month p and the last SSN, which acts as
fixed starting “tie point” s for the whole sequence of monthly predictions.
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(a)

(b)

Figure 2. Example of two predictions, for a strong cycle (top (a), January 1979) and for
the current rather low cycle (bottom (b), June 2023). Black line: observed SSN up to the last
available month (black dot). Blue solid and dotted line: mean cycle. Red line: predictions (gray
shading: the inner range is the standard deviation, and the outer range is the 90% percentile).
In the top prediction (a), the actual SSN after the prediction date is shown as a dotted black
line. The vertical dashed line marks the fixed 18-month ahead limit of operational predictions
as published by NOAA and WDC SILSO.

The asset of the ML method thus entirely resides in the additive correction in

Equation (18), which only includes a single difference between the observed value

Sc
s and the mean cycle S̄s, for the last month available in the input SSN data.

The improvement to the zero-order mean-cycle prediction thus relies entirely on

this single piece of information about the actual progress of the current cycle.
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Moreover, we point out that Equation (16) is closely equivalent to the cross-
correlation coefficient rsp between the monthly values Sn

p at month p and Sn
s at

month s for any Cycle n:

rsp =

∑c−1
n=8

(
Sn
s − S̄s

) (
Sn
p − S̄p

)√∑c−1
n=8

(
Sn
s − S̄s

)2∑c−1
n=8

(
Sn
p − S̄p

)2
=

∑c−1
n=8 ∆

n
s∆

n
p√∑c−1

n=8 (∆
n
s )

2∑c−1
n=8(∆

n
p )

2
(19)

In k̂sp, the denominator is thus normalized only relative to the variance at
month s (starting month), instead of both months s and p in rsp. Therefore, we
can expect that the ksp factor will generally behave like rsp. Indeed, as shown in
a single prediction (Figure 2), ksp is close to unity for the first predicted months
just following month s, and then declines to lower values for longer lead times.
Taking the ratio of both quantities defined in Equations (15) and (19), we obtain:

Gsp =
k̂sp
rsp

=

√∑c−1
n=8(∆

n
s )

2
∑c−1

n=8(∆
n
p )

2∑c−1
n=8(∆

n
s )

2
=

√√√√∑c−1
n=8(∆

n
p )

2∑c−1
n=8(∆

n
s )

2
(20)

Using Equation (2) for σm, this is thus essentially the ratio between the standard
deviations relative to the mean cycle at the time of the last observed SSN, σs,
and at the time of the prediction, σp, respectively. The ML correction coefficient
can thus be rewritten, as:

k̂sp = Gsp rsp (21)

Therefore, the correction coefficient can be decomposed as the cross-correlation
between the SSNs at times s and p multiplied by a gain factor Gsp. As the
standard deviation σm largely follows the variation of the mean SSN (Figure 1),
we thus expect the gain factor to track the growing or declining trend of the cycle
between months s and p. Therefore, the Gsp factor can strongly differ from unity
when there is a steep trend in the cycle, and thus, ksp may then significantly
deviate from rsp. For instance, in the early rise of the cycle, ksp may take values
larger than 1, as the variance is much larger at the predicted month p than at the
starting month s, thus strongly amplifying the base observed difference Sc

s − S̄s

in Equation (18). As explained in Section 5.2, we indeed observe this effect in
our statistical analysis.

4. Prediction Errors: Derivation and Interpretation

4.1. The Original Error Formulae

Next to the predictions, the NOAAmethod, as programmed in the heritage FOR-
TRAN programs, also computes the errors on predicted values by the following
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formula:

σS
sp = 1.812

√√√√(σ2
p − k̂2sp σ

2
s

)
(Nc − 1)

Nc − 2
.

√
1 +

1

Nc
+

(
Sc
s − S̄s

)2
σ2
s (Nc − 1)

(22)

where Sc
s is the last SSN in the data, and σ2

s and σ2
p are the variances from

Equation (2), for months m = s and m = p.
Likewise, the estimated error on the correction coefficient ksp is given by:

σk
sp = 1.812

√√√√(σ2
p − k̂2sp σ

2
s

)
(Nc − 1)

Nc − 2
/
√
σ2
s (Nc − 1) (23)

Those estimated errors are an asset of this method, as most other early predic-
tion methods lack any rigorous error estimate. In order to verify the exactness of
the above programmed formulae, we reconstruct hereafter the full mathematical
derivation of the above expressions.

By examining the above error formulae, we can first do the following obser-
vations. Firstly, as the estimation of k̂sp, the slope of regression line, is made on
sample data representing the cycle-to-cycle variability of solar activity, it will be
affected by some uncertainty. Secondly, we can assume that true prediction errors
would not match the calculated prediction errors, as the position of regression
line describes only the average relation, in general. Actual values are scattered
around it. Moreover, separate measurements deviated from this line in the past.
Therefore, it is natural that the same deviations will happen in the future.

The errors related with the sources mentioned above may be reflected by the
confidence interval of the forecast when certain assumptions about the properties
of the series and the mean square forecast error are made.

4.2. Estimation Errors of Regression Coefficients âsp and k̂sp

The covariance matrix of the estimation error of X̂sp is given by

cov
(
X̂sp

)
= D · var (Y ) ·DT

=
(
σε
sp

)2
DDT =

(
σε
sp

)2 ∣∣∣∣∣ 1
Nc

0

0 1∑c−1
n=8(∆

n
s )

2

∣∣∣∣∣ (24)

Based on the variance of ∆n
s given by Equation (2) for month m = s, Equa-

tion (24) can be rewritten as

cov
(
X̂sp

)
=
(
σε
sp

)2 ∣∣∣∣∣ 1
Nc

0

0 1
σ2
s (Nc−1)

∣∣∣∣∣ (25)

Therefore, the variances of estimates âsp and k̂sp are presented as

var (âsp) =
(
σε
sp

)2 1

Nc
(26)
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var
(
k̂sp

)
=
(
σε
sp

)2 1

σ2
s (Nc − 1)

(27)

4.3. Prediction Error

By re-writing Equation (5), we can express the SSN value at month p in Cycle c

as

Sc
sp = S̄p + asp + ksp

(
Sc
s − S̄s

)
+ εcsp (28)

The prediction error δsp at month p is then determined by subtracting the exact

value for month p (Equation (28)) from the predicted value Ŝc
sp (Equation (18))

δsp = Sc
sp − Ŝc

sp

= (asp − âsp) + ksp
(
Sc
s − S̄s

)
+ εcsp − k̂sp

(
Sc
s − S̄s

)
= εcsp + (asp − âsp) +

(
ksp − k̂sp

) (
Sc
s − S̄s

)
(29)

The variance (σ̂δ
sp)

2 of prediction error δsp is given by

(
σ̂δ
sp

)2
= var (δsp) =

(
σ̂ε
sp

)2
+ var (âsp) + var

(
k̂sp

) (
Sc
s − S̄s

)2
(30)

or, by using Equations (26) and (27):

(
σ̂δ
sp

)2
=
(
σ̂ε
sp

)2(
1 +

1

Nc
+

(
Sc
s − S̄s

)2
σ2
s (Nc − 1)

)
(31)

At this point, it is important to note that although the intercept of the regres-

sion is null in the ML formulation, as explained in Section 3.2 (Equation (14)),

there is still a contribution from the âsp term to the total prediction error, which

appears as the var (âsp) term in Equation (30) given by Equation (26).

4.4. Estimation of Standard Deviation σ̂ε
sp

As follows from Equation (5) :

εcsp = ∆c
p − ksp∆

c
s − asp (32)

The variance estimation of noise εcsp is presented as

(
σ̂ε
sp

)2
=

∑c−1
n=8

(
∆n

p − ksp∆
n
s

)2
Nc − 2

(33)
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Here, we use Nc−2 in the denominator, as we estimate two regression coefficients
asp and ksp. As follows from Equation (33) :

(
σ̂ε
sp

)2
=

∑c−1
n=8

((
∆n

p

)2 − 2ksp∆
n
p∆

n
s + (ksp∆

n
s )

2
)

Nc − 2

=

∑c−1
n=8

(
∆n

p

)2 − 2ksp
∑c−1

n=8 ∆
n
p∆

n
s + k2sp

∑c−1
n=8 (∆

n
s )

2

Nc − 2
(34)

Let us consider all the terms in the nominator of Equation (34). According to
Equation (2), the first term can be presented as

c−1∑
n=8

(
∆n

p

)2
= σ2

p (Nc − 1) (35)

Let us multiply and divide the second term of Equation (34) with
∑c−1

n=8 (∆
n
s )

2
.

Then

2 ksp

c−1∑
n=8

∆n
p∆

n
s = 2 ksp

∑c−1
n=8 ∆

n
p∆

n
s∑c−1

n=8 (∆
n
s )

2

c−1∑
n=8

(∆n
s )

2
(36)

Taking into account Equation (15) defining ksp and Equation (35) for time s
instead of p, we can rewrite Equation (36) in the following way

2 ksp

c−1∑
n=8

∆n
p∆

n
s = 2 k2spσ

2
s (Nc − 1) (37)

Likewise, writing Equation (2) for month m = s as

σ2
s =

∑c−1
n=8 (S

n
s )

2 −Nc

(
S̄s

)2
Nc − 1

=

∑c−1
n=8 (∆

n
s )

2

Nc − 1
, (38)

we can rewrite the third term of Equation (34) as

(ksp)
2
c−1∑
n=8

(∆n
s )

2
= (ksp)

2
σ2
s (Nc − 1) (39)

Thus, Equation (34) can be rewritten as

(σ̂ε
sp)

2 =

(
σ2
p − 2k2spσ

2
s + k2spσ

2
s

)
(Nc − 1)

Nc − 2
=

(
σ2
p − k2spσ

2
s

)
(Nc − 1)

Nc − 2
(40)

The estimated standard deviation σ̂ε
sp of the noise in the data thus equals

σ̂ε
sp =

√(
σ2
p − k2spσ

2
s

)
(Nc − 1)

Nc − 2
(41)

SOLA: MLarticle_V7_R2.tex; 15 February 2024; 1:55; p. 15



F.Clette, S. Jain and T.Podladchikova

4.5. Interpretation: Standard Errors and Confidence Intervals

Taking into account Equation (31), the standard deviation of the prediction is
finally given by

σ̂S
sp =

√(
σ2
p − k2spσ

2
s

)
(Nc − 1)

Nc − 2

√
1 +

1

Nc
+

(
Sc
s − S̄s

)2
σ2
s (Nc − 1)

(42)

Similarly, using Equation (27), the standard deviation on the ksp coefficient is
given by

σ̂k
sp =

√(
σ2
p − k2spσ

2
s

)
(Nc − 1)

Nc − 2

√
1

σ2
s (Nc − 1)

(43)

We have thus obtained here the exact mathematical derivation of the error
values computed by the NOAA heritage program (Equations (22) and (23)). An
equivalent derivation was also published recently in Petrova et al. (2021), in a
parallel application to radio flux predictions, together with their Kalman filter
update.

The above expressions fully match the original ones, as included in the NOAA
source program (respectively Equations (42) and (22), and Equations (43) and
(23)), except for the constant factor 1.812. This value actually corresponds to
t10.95, the two-tails critical value of Student’s t-distribution for α = 0.05 (con-
fidence level p = 1 − 2 × α = 0.9), and the number of degrees of freedom
k = Nc − 1 = 10. The latter is the number of past cycles used in the statistics,
Nc, minus the number of estimated coefficients (here only one: ksp). So, the
original NOAA program does not provide the mean squared errors themselves,
but the 90% confidence intervals.

Now, it also means that this tk.95 factor must actually vary with time and
be re-computed every time Nc is incremented by 1 at each new cycle. However,
the constant hard-coded factor used in the heritage program corresponds to the
fixed value Nc = 10 and thus for predictions of Cycle 18 (c = 8 + 10), i.e. the
epoch when McNish and Lincoln derived their formulae. It was apparently never
updated later on, leading to an overestimate of the uncertainty of the output
predictions. Today, with Nc = 17, for the same level if significance α = 0.1,
the correct factor should be t16.95 = 1.746. Therefore, the impact of this past
oversight was fortunately limited, with an overestimate by only 3.8%. Following
this finding, the old constant value was replaced by a calculated tk.95 value in the
operational program.

5. Key Properties of the Base ML Components

By injecting the actual SSN series from Cycles 8 to 25 in the above definitions
of the mean cycle, correction coefficient and their respective errors, i.e. the base
components of actual ML predictions, we can already infer some key properties
that will help interpreting the statistics of bulk predictions presented in the next
Section.
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5.1. Mean Cycle and its Dispersion: Key Properties

Considering first the mean cycle shown in Figure 1, we observe that the disper-

sion of cycles is lowest during the first ten months after the starting minimum,

and the SN values are also lowest, starting just below 10 on the first months of

the cycle. The standard deviation then grows and reaches a maximum at month

41, just before the peak of the mean cycle is reached in a flat maximum between

months 44 and 50 (3.75 years), near SN= 170. The dispersion of all cycles then

slowly decreases up to the second ending minimum, at month 130 (mean cycle

length of 10.75 years for Cycles 8 to 24). However, the dispersion σm is then

twice as large as in the starting minimum. The mean value itself is also higher,

at S̄m = 17.

From the upper plot in Figure 1, we can observe that this higher dispersion

towards the end of the mean cycle is largely due to the differences in cycle lengths,

which cause a temporal spread of the ending minima (from 120 to 150 months,

thus over 2.5 years). Indeed, knowing that this second minimum corresponds

to exactly the same set of cycle minima as in month 0, this higher standard

deviation can only result from this temporal misalignment. Due to the latter, the

second minimum actually includes descending or ascending sections of different

cycles, instead of their actual ending minimum, thus inevitably and artificially

raising this second mean minimum and its standard deviation.

This second contribution to σm due to temporal dispersion increases contin-

uously with the relative time m, as we move away from the common tie point

of the starting minimum. This temporal smearing effect is thus also already

present to a lower extent at the time of the cycle maximum, around month 47.

As a consequence, it also produces a rather smoothed and rounded maximum,

less sharp than actual maxima, and the peak value is reduced relatively to

the ascending and declining phases of the mean cycle. After the ending mean

minimum, the rise of the next cycle is also characterized by even larger errors

than in the corresponding phase at the beginning of the mean cycle, thus making

predictions beyond the end of a cycle particularly unreliable.

Considering now the relative error σm/S̄m (blue dashed line in Figure 1, lower

plot), we can see that it is pretty stable over a large part of the solar cycle, at

about 30%, but late in the cycle, it grows to much higher values, in particular

around the ending minimum. This results from the combination of enhanced

errors late in the cycle, as explained above, with the low SSN values of the

minimum phase. A notable feature is the dip at m = 130, which marks the

moment when most cycles pass their flat minimum (null or low first derivative),

thus briefly quenching the effect of temporal dispersion.

Given the above characteristics, in subsequent interpretations of the predic-

tion performance, we must remember that the approximation of the mean cycle

does not only lead to a poor match for the actual range of cycle amplitudes, but

that the mean cycle is also distorted and does not vary in a very realistic way,

compared to true cycles.

SOLA: MLarticle_V7_R2.tex; 15 February 2024; 1:55; p. 17



F.Clette, S. Jain and T.Podladchikova

Figure 3. Plot of the correction coefficient k̂sp (thick black line), of the cross-correlation rsp
(blue line), and of the gain factor Gsp (red dashed line) for a prediction starting at month 12
after the initial cycle minimum. The error on the correction coefficient σ̂k

sp is indicated by the
gray shading. The green shaded curve along the horizontal axis shows the mean solar cycle
(arbitrary scale) as temporal indicator, with vertical green dashed lines marking the maximum
and minimum of the mean cycle. The horizontal blue dashed lines at -1, 0 and +1 highlight
the maximum range for rsp. The relative error σ̂k

sp/k̂sp is plotted in the lower panel.

5.2. Correction Coefficient: Key Properties

Now, next to this base mean cycle, the correction factor k̂sp, defined in Equa-
tion (16), plays the primary role in the ML method. Like the mean cycle, it is
invariable when using a fixed set of past cycles as a base (here Cycles 8 to 25),
and thus ksp varies in the same way for each cycle prediction.

As illustration, in Figures 3, 4 and 5, we plotted the k̂sp coefficient as a
function of forward time p for three starting months s after the start of the cycle:
respectively, month 12 early in the rising phase, month 42 near the maximum,
and month 84 later in the declining phase. In all three figures, we also decom-
posed k̂sp into its primary components (Equation (21)): the cross-correlation rsp
and the gain factor Gsp. We find that the properties of k̂sp, rsp and Gsp change
drastically over a solar cycle. For predictions made early in the cycle (starting

month s = 12, Figure 3), k̂sp is shaped primarily by Gsp values much larger
than unity, with an interval of negative rsp late in the cycle. However, the errors
grow very quickly with p and are large overall (> 100%), making the corrections
non-significant, thus not reliable, over most of this late part of the cycle. When
reaching the maximum (month s = 42, Figure 4), k̂sp remains close to rsp, with

a gain Gsp mostly below 1. rsp and thus k̂sp also stays close to 0 over the last
three years of the cycle, thus making the predictions largely equal to the mean
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Figure 4. Plot of the correction coefficient k̂sp (thick black line), of the cross-correlation rsp
(blue line) and of the gain factor Gsp (red dashed line) for a prediction starting at month 42
after the initial cycle minimum. The contents are the same as in Figure 3.

Figure 5. Plot of the correction coefficient k̂sp (thick black line), of the cross-correlation rsp
(blue line) and of the gain factor Gsp (red dashed line) for a prediction starting at month 84
after the initial cycle minimum. The contents are the same as in Figure 3.
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Figure 6. 2D map of the correction coefficient k̂sp as a function of the starting time s of
the prediction (horizontal axis) and of the prediction time p (vertical axis), both counted in

months from the starting minimum of the mean cycle. In the early part of the cycle, k̂sp takes
values much larger than 1 (red zones at left and far right). Just before the maximum and the
ending minimum of the mean cycle, it takes negative values (green zones).

cycle, whatever the last observed SSN at time s. For predictions made during
the whole declining phase of the cycle (month s = 84 shown in Figure 5), k̂sp
remains close to rsp, with a small error, indicating rather good predictions over
this final part of the solar cycle. However, the gain and error abruptly rise again
to large values beyond the ending minimum, indicating a sharp loss of predictive
capability once the end of the cycle is reached.

In order to get a more global view of those strongly varying properties along a
solar cycle, we also built a two-dimensional color map of k̂sp, as a function of the
starting month s of the prediction and of the predicted month p (Figure 6). In
order to keep the same month p aligned horizontally, we shifted each prediction
up by one month for each s, thus referring p to the start of the cycle instead of
the base month s of each prediction. As a comparison, we mapped in the same
way, the cross-correlation coefficient rsp in Figure 7.

As discussed in the previous Section, we can see that k̂sp and rsp largely follow
the same patterns. A first prominent feature is a decreasing ramp from a value
of almost 1 for the first predicted month following the last observation (lower
diagonal edge) and decreasing to low values < 0.3, for forward times of about 2
or 3 years. This thus means that beyond that limit, long-term ML predictions
largely come back to the base mean cycle.

However, the correction never fully vanishes and other features appear, and
this time, they are fixed relative to the predicted month (vertical axis), instead
of the start time (diagonal band). In particular, negative values indicating an
anti-correlation are found for predictions starting over the s range 10 to 48,
and p ranging from 80 to 128. Therefore, it involves predictions made before
the mean-cycle maximum for months in the descending phase. An even stronger
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Figure 7. 2D map of the cross-correlation rsp. We note the similarity of this map with the

map of k̂sp in Figure 6, except that no values exceed unity. Negative values (green zones)
appear in the same time ranges, and correspond to an anti-correlation of the SSN between the
time of the last observation s and the prediction time p.

anti-correlation is found at the end of the cycle for s from about 90 to 128 and
p above 130, thus for predictions made in the late part of the declining phase,
for months in the next ascending phase. Both features thus involve sections of
the cycle with opposite trends.

Such an anti-correlation is actually the signature expected from a temporal
shift of the extremum. For instance, if a cycle rises faster, values at a given month
s will be higher during the ascending phase, but as the maximum happens earlier,
a given month p in the declining phase will fall a bit later in the decline, and
thus be lower. We thus see that the k̂sp factor partly accounts for this. The anti-
correlation is stronger at the end of the cycle than around the maximum, again
indicating the temporal shifts are growing with time p, as discussed above for
the mean cycle. Still, we must remember that this behavior is fixed relative the
mean cycle, and does not adjust to the specific evolution of each actual cycle.

Now, there is a major feature in k̂sp that is absent in the cross-correlation rsp.

For the first 9 months of the cycle, k̂sp increases instead of decreasing for larger
lead times p. It takes values much larger than 1 (up to 4.5) and remains high
for all p values. It thus suggests that the ML method applies strong corrections
relative to the mean value for the whole temporal range of predictions. However,
considering the prediction formula (Equation (18)), we must take into account
that just after the initial minimum, the observed difference (Sc

s − S̄s) is always

small. Therefore, a high k̂sp amplification factor is needed to produce a correction
that is large enough in the subsequent ascending and maximum phases of the
cycles. This explains the extreme values of k̂sp.

However, if we also consider the standard error σ̂k
sp on k̂sp (Equation (43)),

mapped in the same way in Figure 8, we observe that the error also reaches very
high values in this early part of the cycle, with peaks around months 40 and
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Figure 8. 2D map of the standard error σ̂k
sp on the correction coefficient k̂sp, over the same

coordinates as in Figures 6 and 7. This map shows that this error is particularly large during
the first few months following the minimum of the cycle for predictions of the rising phase of
the cycle.

155, i.e. the times of maxima, in which the error reaches almost 100% of the
k̂sp value. Therefore, overall, those maps indicate that the correction term and
thus the ML predictions are largely unreliable just after a new cycle is starting.
The error σ̂k

sp falls below 1 only for s beyond 18 months, thus 1.5 years after

the minimum has passed, while artificially high correction factors k̂sp for all p
values prevail during the first 9 months, which is thus the most unreliable part.

Finally, one could expect a similar effect when s reaches the ending minimum
around month 130. However, as the minimum SN value and its standard devi-
ation are both higher, as pointed out in Section 5.1, no extreme Gsp factor is
needed to amplify those already enhanced differences. The temporal smoothing
of this late part of the mean cycle also leads to a shallower rising trend in the
late part following the ending minimum at s = 130, compared to the early rise
for s before 40, thus further decreasing the k̂sp factor.

All the above properties are expected to play a key role on the reliability of
the resulting predictions, but those roles combine and overlap in a complex way.
In order to fully assess the reliability of the ML output, we will now continue
with a full simulation of predictions over multiple cycles.

6. Statistics of the ML Performance

6.1. Bulk Production of Monthly Hind-casts

As past evaluations of the reliability of the ML method have been fragmentary
and often limited to a short time interval, we do not know much about the
performance of ML predictions for a wide variety of solar cycles of different
amplitudes and duration.
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Therefore, we decided to massively produce monthly ML predictions over
the past 16 cycles, for which we can then compare predictions with the actual
evolution of solar activity. For this purpose, we first converted the algorithms of
the original NGDC FORTRAN programs to the Python language, which allowed
modernizing the structure of the program, implementing different options in the
calculation, and retrieving the input data directly from our global database
instead of text files. Since 2018, those programs were run on a monthly basis
at WDC SILSO in parallel with the reference FORTRAN programs as part
of the operational production of cycle predictions, in order to check that the
output was rigorously identical for both codes. Once validated, the core Python
program was just expanded to allow running it in batch mode for any number
of starting months. By using exactly the same program for this simulation of
past predictions, we thus ensured that the latter are fully compliant with the
current operational predictions, as well as those published previously by the
NGDC/NOAA.

In our calculations, the program switches to a new cycle once the minimum
of the next cycle is passed, based on the SSN series. Starting for the date of
each minimum, all subsequent predictions are computed for the months counted
from this new minimum. So, in other words, instead of continuing to use the
late part (long p times) of the mean cycle, the method jumps again to the very
beginning of the mean cycle (p = 0). This closely simulates what happens for
actual operational predictions. There is only one slight compromise with reality.
Indeed, for operational monthly predictions based on the latest observed data,
the minimum can only be confirmed a few months after this extremum has been
passed. Therefore, the switch from one cycle to the next one usually occurs with
a delay of a few months after the minimum. Except for this slight displacement
of the jump to a new cycle (by 2 – 3 months), the output predictions are identical
and our global statistics are not affected.

Those abrupt transitions from one base cycle to the next at the minimum are
an intrinsic feature of the ML method and they lead to two consequences in the
chronology of computed ML predictions:

• A discontinuity occurs at each cycle minimum, which can cause a sharp
jump in the predicted SN values. The amplitude of this jump will depend
on the different local mismatches of the predictions with the real SSN late
and early in the cycle. It will depend on the amplitude of the ongoing cycle
and the actual length of the preceding cycle, but will never exceed the
prediction error.

• The number of predictions attached to each solar cycle is variable, and
spans the actual duration of that cycle. So, when deriving our statistics for
the late part of the cycles, beyond the duration of the shortest past cycle,
the number of available cycles present in the data for a given prediction
time p decreases by unit steps for large p times.

This peculiarity thus leaves visible patterns in the output predictions and our
subsequent statistical results (small discrete jumps), but without strongly influ-
encing the overall results. Those artificial discontinuities just reveal an intrinsic
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drawback of the ML method. When using the ML method, we just need to be
aware of their presence.

Overall, the base statistical data set that was generated in this way included
2271 series of predictions, for all starting months between November 1833 and
January 2023, thus spanning all cycles from Cycle 9 to the beginning of Cycle 25,
currently in progress. Each starting month is treated as the last available SSN
value, and we chose to compute predictions over the 13 years (156 months) that
follow this starting month, which allows studying the predictions for forward
times covering entirely the longest solar cycles.

We computed two versions of those bulk predictions:

i) A “strict” simulation, where only cycles preceding the prediction date were
used to build the mean cycle and to compute the correction factor.

ii) A “homogeneous” simulation, where all cycles from 8 to 24 are used for all
predictions as a common fixed reference set, thus also including the cycles
that follow the prediction date.

By being fully faithful to reality, where only the past observed data can be
used, the “strict” simulation is mainly useful to check the exact correspondence
with actual predictions published in the past. However, for our performance
simulation, it leads to varying statistical properties as a function of time, as
the base sample of input data decreases as we go back in time. This leads to
particularly unreliable results for the first few cycles, after Cycle 8. As anyway,
no real ML prediction was published before 1949, when McNish and Lincoln
invented their method, all cycles before 18 are irrelevant in this “strict” version
of the simulation, which thus limits the statistical study to only 7 cycles (19
to 25). Finally, by using less cycles, those results are not representative of the
present performance of the method.

By contrast, in the “homogeneous” option where all solar cycles are included,
we ensure that all predictions have the same statistical base, which is needed in
our global statistical evaluation. Since we then include all elapsed cycles presently
available (17 cycles, from 8 to 24), the performance of all predictions is equivalent
to the operational predictions issued nowadays and in the coming years, which
is what we currently need. In fact, for the last few cycles, the “strict” and
“homogeneous” predictions also largely converge, as they are then based on
almost the same set of past cycles. Moreover, fully reliable predictions can be
obtained even for the early cycles, back to Cycle 8 in our simulation.

Therefore, we will only discuss the results of the second simulation in our
subsequent analyses below. We made many comparisons between the two sets
of results, but we do not develop them in this article as they have shown that
all the conclusions reached in this “homogeneous” analysis are also valid for
the “strict” simulation. In fact, some properties just appear less clearly in that
latter case, because they are partly altered by the more restricted and variable
underlying data sample.

6.2. Observed − Predicted (O−P) Differences: Global Properties

In Figure 9, we first plot side-by-side the observed SSN over the 17 past solar
cycles, and the corresponding predictions for three different forward times p:
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(a)

(b)

(c)

Figure 9. Plot of the observed SSN (red line) and predicted SSN (blue line) for a forward
prediction time of 6 months (a), 24 months (b) and 48 months (c).
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Figure 10. Map of the difference between observed and predicted SSN, Ŝs
p−Ss

p, as a function
of the starting time of the prediction s (horizontal axis) and of the prediction forward time p
(vertical axis). The color scale is shown at right and spans the range -100 to +100.

6 months (short-term), 24 months (mid-term) and 48 months, which goes well
beyond the limit of 18-months ahead generally adopted in the past published ML
predictions. For p = 6 months (Figure9 (a)), the predictions remain very close to
the actual SSN. Only the peak of Cycle 22 in 1991 is significantly overestimated.
For p = 24 months (Figure9 (b)), predictions start to differ significantly from
the actual SSN, sometimes by more than 20%. We observe that the predictions
tend to fall below the SSN for strong cycles, while they overestimate the SSN
for weak cycles. Some of the cycle minima are also overestimated. For p = 48
months (Figure9 (c)), all those tendencies have grown further, and we observe
that predictions become rather uniform, with only a minor modulation of the
predicted amplitude from cycle-to-cycle, whatever the actual amplitude of the
true cycle.

Another way to display this general behavior is to plot a map of the difference
between the observed and predicted SSN as a function of start time s and
forward prediction time p, as in Figure 10. Here, we can see that this difference is
dominated by diagonal ridges of positive or negative differences, spaced by about
11 years. The diagonal pattern is actually inclined at 45°, which suggests that
the primary differences observed − predicted are fixed in absolute time (fixed
prediction date). The ridges fade out at the bottom, at low p forward times, for
which they decrease towards zero, indicating an improving agreement between
predictions and actual observations. On the other hand, for p > 24 months, the
ridges already reach their full amplitude, which then remains largely constant
for longer p times, indicating that the prediction errors do not grow further and
become largely independent from prediction time p.

This overall dependency to p can be summarized by computing the root-mean-
square (RMS) difference between the observed and predicted SSN for ahead
month p , defined as:

δrms
p =

√√√√∑c−1
n=8

∑Ns

s=1

(
Ŝn
sp − Sn

sp

)2
N

(44)
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Figure 11. Variation of the root-mean-square (RMS) difference δrms
p (blue curve, labeled

“RMS”) as a function of prediction lead time p in months. As the mean difference δp (black,
labeled “S.Mean”) is close to 0 for all p times, the standard deviation σδ

p is almost equal to
δrms
p and is not plotted here, as it would be fully superimposed on the “RMS” curve.

where Ŝn
sp and Sn

sp are respectively the predicted and observed SSN for the same
month, and the sum is over all starting times s of all predictions in each cycle,
and over all input Cycles 8 to 24 (number of predictions N = 2271), with a
given fixed prediction forward time p, thus along an horizontal line in the map
of Figure 10.

A measure of systematic deviations of predictions relative to observed SSN is
provided by the mean difference:

δp =

∑c−1
n=8

∑Ns

s=1

(
Ŝn
sp − Sn

sp

)
N

(45)

and the random dispersion around this mean difference is given by the standard
deviation:

σδ
p =

√√√√∑c−1
n=8

∑Ns

s=1

((
Ŝn
sp − Sn

sp

)
− δp

)2
N − 1

(46)

Figure 11 shows that the RMS difference δrms
p increases steadily over the first

40 months before stabilizing at a value of about 38, which is the overall dispersion
of all cycles in the base sample over the whole duration of the cycle (thus mixing
all phases of the cycle). The mean difference δp is almost null for all times p,
indicating that no significant systematic deviation of predictions relative to the
observed SSN exists, over all 17 past solar cycles and all starting times along
those cycles. Consequently, the standard deviation σδ

p coincides with δrms
p (blue
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curve in Figure 11), which tells us that the overall uncertainty measured by δrms
p

is entirely due to random cycle-to-cycle variability, rather than to systematic
biases in the ML prediction method.

6.3. O−P Differences : Single Cycles

In order to better quantify the above properties, we are now going to consider in
more detail single solar cycles. As illustration, we present three different sample
cycles with low, intermediate and high maximum amplitude, respectively Cycles
14, 23 and 21.

For each cycle, we plotted a map of the difference between observed and
predicted SN (Figure 12), in the same way as in Figure 10, but now extracting
vertical slices spanning only a single solar cycle in the horizontal temporal dimen-
sion. However, here, the vertical axis now gives the date for which the prediction
is made, instead of simply the forward time p relative to the last observed month,
like in Figure 10. Therefore, the predictions now fill a diagonal band, with its
lower edge corresponding the first month following the starting month of the
prediction (horizontal axis). The upper edge of the band correspond to the 155-
month (13 year) range over which we calculated predictions. Therefore, only the
lower half of the plot corresponds to predictions of the cycle in progress. The
upper part, which extends into the next cycle, would be used only for predictions
made shortly before the actual end of the cycle, as explained in Section 6.1.

We find that the differences are lowest along the lower edge and grow upwards,
but here, the differences stabilize at values that are constant relative to the
date for which the prediction is made, independently of the forward time of the
prediction, i.e. of the starting date of the prediction. This produces horizontal
bands of rather constant values in the maps. Moreover, the differences are mostly
negative for Cycle 14 (Figure 12 (a)), which is lower than the mean cycle, mostly
positive for Cycle 21, a high cycle (Figure 12 (c)), and fluctuating around 0 for
Cycle 23 (Figure 12 (b)), which matches fairly well the mean cycle. This thus
shows that beyond the first months following the starting month, the prediction
errors are predominantly the difference relative to the fixed mean cycle, and they
are largely independent of the starting date of the predictions.

Comparing the maps in Figure 12 with the simple difference between the three
cycles and the mean cycle (Figures 13, 14 and 15), we can see that the latter
(shaded area between the curves) indeed matches the fixed variations of the
differences along the vertical dimension in the maps of differences (lower half,
spanning 155 months). In particular, the differences are mostly negative for the
lowest cycle (#14, Figure 13) and mostly positive for the highest cycle (#21,
Figure 15). Accordingly, individual predictions (thin curves) are systematically
overestimating the actual activity level for Cycle 14, and underestimating it
for Cycle 21. For Cycle 23 (Figure 14), which has almost exactly the same
amplitude as the mean cycle, the differences are lower and fluctuate around
zero. In that case, individual predictions match fairly closely the true cycle over
its full duration, though they still largely fail beyond the ending minimum. In
addition, we note that the largest mismatch near the maximum is actually due
to the fact that the maximum of Cycle 23 comes later than the maximum of the
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(a)

(b)

(c)

Figure 12. Maps of the difference between observed and predicted SSN for Cycle 14 (low
maximum, (a)), Cycle 23 (intermediate maximum, (b)) and Cycle 21 (high maximum, (c)).
Here, the vertical axis spans 18 years, and thus extends well past the end of the predicted
cycle, as we wish to produce predictions up to the end of the cycle, which thus extend into
the next cycle. In practice, only the lower half of the map (about 11 years) is actually used in
operational predictions.
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Figure 13. Difference between the SSN in individual solar cycles (black solid curve) and the
mean cycle (dashed line) for a weak solar cycle (Cycle 14). The red (blue) shading indicates
that the true cycle is higher (lower) than the mean cycle. The colored thin curves are actual
monthly predictions taken every 12 months (starting month marked by a colored dot).

mean cycle. Likewise, the large negative difference beyond month 130 is almost
entirely due to a strong mismatch between the length of Cycle 23, which was
much longer than the fixed duration of the mean cycle.

Overall, those results illustrate how the excess or deficit of the actual SSN
relative to the mean cycle leads to a corresponding upwards or downwards dif-
ference in the individual predictions, and also to a corresponding artificial trend
over the first two years of the predictions. Such a trend seems to be intrinsic to
the ML principles. Namely, the predictions track the observed cycle at p = 0
and progressively drift away by converging towards the invariable mean cycle
as p increases. This upward or downward bias thus starts already at p = 1,
suggesting that it is a primary contribution to the prediction error. For large p
times beyond 12 to 24 months into the future, the prediction errors fully reduce
to the discrepancy between the actual solar cycle and the fixed mean cycle, thus
producing a fixed pattern matching the history of the actual solar cycles. Those
long-range errors are characterized by the following properties:

• they are independent of the forward time of the prediction, beyond the first
few months following the starting time of the prediction.

• they do not grow indefinitely for increasing forward times, but fluctuate
within the range of differences with the mean cycle.

• as the mean cycle provides the baseline prediction, the ML method suffers
from a downward bias when the actual cycle has a high amplitude, and an
upward bias for weak solar cycles.

Moreover, we observe that the O−P differences are due both to the amplitude
of the actual cycle but also to the different times of the cycle maximum and end-
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Figure 14. Difference between the SSN in individual solar cycles (black solid curve) and the
mean cycle (dashed line) for a cycle of medium amplitude (Cycle 23). The curves are presented
like in Figure 13.

Figure 15. Difference between the SSN in individual solar cycles (black solid curve) and the
mean cycle (dashed line) for a cycle of high amplitude (Cycle 21). The curves are presented
like in Figure 13.
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ing minimum, i.e. the rise time and the cycle length. Around those two extrema,
this temporal mismatch may become the dominant cause of the prediction error.

6.4. RMS Prediction Errors over Cycle Phases (Single Cycles)

Based on the above insight, we can derive a representative value of the RMS
prediction error valid for all cycles, taking into account the two main properties
found in the above results:

• the prediction error is always close to zero for the first predicted months,
and grows over 12 to 24 month, before stabilizing for longer forward pre-
diction times p.

• for long forward times, the prediction errors are constant for fixed prediction
dates. Therefore, as the starting date of the prediction s progresses, the
same error will occur for shorter forward times relative to this starting
date, thus drifting on the scale of the relative forward prediction times p.

Therefore, we derived δrms
sp , δsp and σδ

sp in the same way as in Equations (44),
(45) and (46), but instead of including all starting times, we limited the sum to
starting times s within a limited time range, to avoid the merging of errors in the
different fixed phases of the solar cycle. In other words, we prevent the smearing
of the diagonal patterns shown in Figure 10 by taking sufficiently narrow vertical
time slices taken at the same phase in all cycles. This is equivalent to averaging
across multiple vertical strips (one per cycle) instead of the whole width of the
map, which led to Figure 11. However, given the 13-month smoothing of the input
SN, it is pointless to restrict the width of our time ranges below 12 months. We
thus settled for a 1-year width.

We first show δrms
sp , δsp and σδ

sp for the three cycles illustrated in the pre-
vious Section, for predictions with a starting day in the first year of the cycle
(Figure 16). We can see that the mean difference δsp (black curve) varies in
accordance with the patterns found above for each cycle. In addition, we plot
the RMS error δrms

sp as the green curve, and the standard deviation σδ
sp relative

to the mean of all predictions within the 1-year time bin as the shaded interval
around δsp. The latter provides a measure of the random errors in the predictions
and of the variation of predictions over the 1-year time interval (evolution of the
cycle), while δrms

sp also includes systematic deviations between predictions and

observations. Therefore, we also plot in the lower panel the σδ
sp/δ

rms
sp ratio. This

ratio varies between 0 and 1, and it indicates which fraction of δrms
sp is random.

A low ratio thus corresponds to intervals in which the RMS prediction error is
dominated by systematic deviations of the predictions.

We can see that the RMS error are low and the σδ
sp/δ

rms
sp ratio is high over the

first 6 to 24 months of the predictions. The small errors are thus dominated by
the uncertainty of the last observed value and the change of solar activity during
the 1-year time window. After this early period, the ratio falls to a low value of
0.2 or below, indicating that the error is mainly due to a systematic deviation,
as is confirmed by a large mean signed difference, which deviates from 0 by much
more than σδ

sp, shown in the upper plot. Depending on the cycle, the σδ
sp/δ

rms
sp
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(a)

(b)

(c)

Figure 16. Prediction error as a function of forward prediction time p, for Cycle 14 (low
maximum, (a)), Cycle 23 (intermediate maximum, (b)) and Cycle 21 (high maximum, (c)),
averaged for starting times in year 1 of the cycle (thus over months s = 1, ... , 12). In the
upper plot of each sub-figure, the RMS error δrms

sp is plotted in green and the signed mean

δsp difference is plotted in black, with the standard deviation σδ
sp (SD) around this difference

shown as the shaded band. The lower plot shows the ratio σδ
sp/δ

rms
sp .
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(a)

(b)

Figure 17. Prediction error as a function of ahead months p, for Cycle 21, averaged for
starting times in year 4 (a) and in year 7 (b) of the cycle. See bottom plot of Figure 16 for
year 1, with the same curve layout.

ratio peaks again near 1 in the late part of the cycle, every time the actual SSN

comes close to the mean cycle. In particular, this occurs near the end of the

predicted cycle, as all cycles decrease to a limited range of low SSN values.

Now, looking at the same error measures for a single cycle (here, Cycle 21) but

for predictions starting in year 1, 4 and 7 (Figure 16 (c), and Figure 17 (a), (b)),

we observe that in accordance to the previous Section, the variations of errors as

a function of forward time, remain largely unchanged, but are each time-shifted

by 36 months to the left, confirming the largely invariant and temporally-fixed

long-range errors. On the other hand, the curve is always “tapered” on the left,
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for the first predicted months, where δrms
sp and σδ

sp decrease towards 0 for the

starting date, and the corresponding σδ
sp/δ

rms
sp ratio rises to 1.

6.5. RMS Prediction Errors over Cycle Phases (All Cycles)

In actual predictions, we cannot use the true observed cycle as a reference to
evaluate the prediction errors. Therefore, the only applicable measure of uncer-
tainty must be derived from the mean of all past predicted cycles. In Figure 18,
we show the same error measures, again for 1-year bins (year 1, 4 and 7), but
where the RMS error δrms

sp is summed over all cycles from 10 to 24, as:

δrms
p =

√√√√∑c−1
n=8

∑Nbin

s=1

(
Ŝn
sp − Sn

sp

)2
Nc Nbin

(47)

where Ŝn
sp and Sn

sp are respectively the predicted and observed SSN for the same
month, and the sum is over all starting times s of all predictions in each 1 year
bin (13 bins), and over all input cycles 8 to 24 for every bin (total number of
predictions Nt = Nc Nbin = 204), with a given fixed prediction forward time p.

Here, the first important difference with the above RMS errors for individual
cycles is that the mean difference δsp is low and does not deviated significantly
from 0 (within one σδ

sp). Therefore, the systematic deviations specific to each
solar cycles are indeed efficiently eliminated. However, now, those cycle-to-cycle
differences contribute to the standard deviation, which is now higher than for
single cycles. As a consequence, the σδ

sp/δ
rms
sp ratio also decreases from near-unity

at month 1, but remains at a plateau between 0.2 and 0.3 for longer forward
times. We note however that the ratio decreases steadily over the first 40 months,
which is longer than for individual cycles. This suggests that when considering
the average deviations of multiples cycles instead of a single cycle, the systematic
bias associated with the ML default mean cycle is improved for predictions up
to month p=40, thanks to the correction factor discussed in Sections 3.2 and 5.2.

δrms
sp and σδ

sp now also largely follow the the variation of the mean cycle, with
a maximum around month 40 and a minimum around month 126. The ending
minimum, and subsequent rise of the next cycle that follows, are higher, which
corresponds to the higher dispersion of the SSN at the end of the cycle, and the
corresponding artificially high mean-cycle, as diagnosed in Section 3.1. This rise
of errors towards the end of the predicted cycle can thus be traced to the growing
contribution of cycle-length differences as the prediction date, counted from the
start of the cycle (initial minimum), increases.This is the temporal smearing
effect intrinsic to the single mean cycle that we described in Section 3.1.

Because of this effect, although the range of SN values decrease at the ending
minimum, the standard deviation remains high. Therefore, the second minimum
is marked by a secondary peak in the σδ

sp/δ
rms
sp ratio, but the latter remains well

below 1 (0.7). Finally, like for individual cycles, the whole pattern of variations
shifts left by 36 months for predictions on year 1, 4 and 7, while remaining
essentially constant. Only the first 20 to 70 months feature the same ramp to 0
for errors and 1 for the σδ

sp/δ
rms
sp ratio, as mentioned above.
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(a)

(b)

(c)

Figure 18. Prediction error as a function of forward months, for all cycles, averaged for
starting times in year 1 (a), 4 (b) and 7 (c) of the cycle. The plotted quantities are the same
as in Figures 16 and 17 for single solar cycles, with sums including here all predicted cycles (9
to 24).
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Figure 19. Comparison of the RMS error δrms
sp over Cycles 10 to 24 with the standard

deviation of predictions σ̂S
sp given by Equation (42), for year 1 of the predicted cycle. The

upper plot shows together the RMS error (black) and the standard deviation σ̂S
sp as a function

of forward prediction time. The lower plots shows the ratio σ̂S
sp/δ

rms
sp .

6.6. RMS Error δrms
sp versus Calculated σ̂S

sp

The above RMS error δrms
sp for all past cycles over 1-year intervals for predictions

at starting times s along the solar cycle should provide a good estimate of the
statistical error that must be attached to each prediction at a specific time s.

We can thus compare this statistics, based on Cycles 10 to 24, with the stan-
dard error derived mathematically in Section 4 (Equation (42)). In Figures 19, 20
and 21, we plot the value of the RMS error derived in the previous Section and
the uncertainty σ̂S

sp calculated for the mid-point of each 1-year interval, as well
as the ratio between the two values. We show again the predictions for years 1,
4 and 7 into the predicted cycles.

We find a good match between the two error values in all cases. They vary
in the same way over the solar cycle. This leads to a largely constant ratio,
with a mean value of 1.3. The ratio is slightly higher during the ascending and
descending phases of the cycle, and lower during the extrema, which indicates
that the larger rms differences are associated with the evolution of solar activity
during the 1-year intervals used in the statistics. The trend of solar activity
during the temporal window just adds a contribution to the rms dispersion.

We thus obtain a good confirmation that σ̂S
sp given by Equation (42) provides

a valid measure of the uncertainty of operational ML predictions.

7. Discussion: Practical Prediction Limits

In their original article, McNish and Lincoln (1949) limited the range of predic-
tion to 18 months, though they do not explain how they chose this limit, which

SOLA: MLarticle_V7_R2.tex; 15 February 2024; 1:55; p. 37



F.Clette, S. Jain and T.Podladchikova

Figure 20. Comparison of the RMS error δrms
sp over Cycles 10 to 24 with the standard

deviation of predictions σ̂S
sp, for year 4 of the predicted cycle. The layout is the same as in

Figure 19.

Figure 21. Comparison of the RMS error δrms
sp over Cycles 10 to 24 with the standard

deviation of predictions σ̂S
sp, for year 7 of the predicted cycle. The layout is the same as in

Figure 19.

thus seems to be largely empirical. As in operational predictions, the SSN is only
determined up to 6 months before the current month (last SN data), this thus
simply corresponds to predictions over the coming 12 months.

Based on our above analysis, we may thus wonder what is the actual temporal
limit up to which the ML predictions remain usable. The global evolution of the
overall RMS error (Figure 11) suggested that the correction factor brings an
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Figure 22. Prediction range, in forward months, for a 20% percentage threshold on the
prediction error σ̂S

sp.

actual improvement up to month 40. Beyond this limit, the RMS error ceases
to increase, and stabilizes at a value corresponding to the range of values taken
by the real cycles relative to the base mean cycle. Therefore, the predictions do
not become entirely meaningless, but the long-range uncertainty (RMS error) is
definitely large, at ±35 on average for all cycles and all prediction times s.

A similar upwards ramp for small p is also found in the RMS errors within
1-year bins. However, as can be seen in Figure 18, the RMS error actually varies
differently for predictions made at different times along the solar cycle, which
suggests a dependency of the maximum prediction range on the phase of the
solar cycle.

For operational purposes, we can define a maximum tolerance on the predic-
tions in percent of the predicted value, thus based on the σ̂p/Ŝ

c
p ratio. Adopting

empirically a tolerance of 20%, we derived the forward month p for which this
threshold is reached for each base month s in the course of the cycle (Figure 22).
We find that the range largely exceeds 18 months during the main middle part of
the cycle from 18 to 65 months, i.e. from 1.5 years in the early rising phase to 2
years past the mean maximum in the declining phase. Therefore, with this 20%
tolerance, reliable predictions can thus be derived well beyond the fixed 18-month
limit, up to 50 months, i.e. 4 years forward. On the other hand, the range drops
below 18 months, in the first year following the starting minimum of a cycle, and
again at the ending minimum. In the latter case, the range essentially stops at
the fixed moment of the ending minimum, because of the steep rise of the error
after the minimum. Such short ranges mean that even short-term extrapolation
of the last observed SSN are completely unreliable, and that predictions are
useless well before the conventional 18-month range. This is consistent with the
corresponding maxima of the error on the correction coefficient diagnosed in
Section 5.2.
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This adaptive prediction range could thus be implemented in operational
predictions in order to provide the longest prediction possible at any time, to
better fulfill the needs of Sun – Earth applications (solar activity, geomagnetic
impacts, radio propagation, etc.).

8. Conclusions: Beyond the ML Method

In this article, we first gathered a full chronology of the development of the ML
method, and its different implementations. We also developed the full mathe-
matical derivation of the prediction uncertainty, confirming the original formula
implemented in the heritage NOAA programs. This thus fully documents one
of the earliest prediction methods developed for operational use, where detailed
descriptions were either missing or scattered over different publications. Based
on the established formulae, we could then derive key properties of the two main
components on which the ML method is based, namely the mean of all past
cycles and the correction term based on the last observed monthly SSN. Finally,
based on hind-casts produced by the standard reference software for all months
from Cycle 9 to 25, we then derived global statistics of the observed−predicted
differences based on the actual record of the past SSN in order to determine the
actual performance of the ML method, in particular as a function of the phase
in the course of the solar cycle.

Our main conclusions are the following:

• The original of the ML method, and in particular of the prediction errors
is mathematically reconstructed and verified. The bulks statistics of hind-
casts are in good agreement with the calculated error, further confirming
its validity.

• The mean cycle is the dominant component in the ML predictions, in
particular for large forward times p > 40. As this mean does not take
into account the varying duration of actual solar cycles, it suffers from a
temporal smearing that increases from the beginning to the end of the cycle.
It leads to an artificially flattened maximum and to a strong degradation
of predictions around and beyond the ending minimum at month 130.

• The standard deviation of the mean cycle purely results from the differences
between actual past cycles for a given time s, which result both from the
different cycle amplitudes and different cycle lengths.

• The ML correction term largely follows the cross-correlation rsp between
the time s of the last observed SSN and the forward prediction time p, but
with a gain factor that can be much larger than unity. This occurs in the
early and late phases of the solar cycle, creating an extreme sensitivity of
the ML predictions to small variation of the SSN during the minima of the
cycle, associated with large uncertainties.

• Overall, for long forward times p, the prediction errors are entirely depen-
dent on the difference between the actual cycle and the mean cycle. They
create a fixed pattern in absolute time counted from the starting minimum.
This pattern is similar to the standard deviation of the mean cycle values.
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This property leads to a systematic downward bias of the predictions for
cycles amplitude larger than the mean cycle, and an upward bias for cycles
of lower amplitude than the mean cycle. In other words, high cycle maxima
tend to be underestimated, while low maxima are overestimated.

• Only for short forward times p, the correction term helps to reduce the
prediction error, which ramps up from almost 0 at p = 1 to the standard
deviation of the mean cycle for p ranging from 10 to 50 months, depending
on the phase of the cycle. The errors for the first predicted months are
essentially random, and result mostly from the short-term randomness of
solar activity, via the last observed monthly SSN, while for long-range
predictions they become more systematic as mentioned above.

• The prediction errors vary in the course of the solar cycle by the combina-
tion of two primary effects:

– A shift of the long-term errors towards smaller forward times p when
the prediction time s increases. Those errors reach high values around
and past the ending minimum.

– Variations of the decline rate of the cross-correlation rsp for small
forward p times. This decline is particularly steep at the starting and
ending minimum of the cycle.

• Finally, we determined the forward time range over which usable predictions
can be obtained, i.e. the precision falls within acceptable limits (operational
tolerance set at 20%, as described in Section 7). We find that the maximum
prediction range varies widely over the duration of the cycle, due to the
complex combination of the above-mentioned effects, from less than 10
months up to 50 months (4 years). Therefore, the forward prediction time
range is shorter than the conventional fixed 18-month range adopted by
NOAA, at the beginning and the end of a cycle. On the other hand, over
the middle of the cycle, this usable range proves to be much longer.

Overall, as expected for this rather simple method, the ML approach suffers
from several strong limitations that were already suspected by earlier studies
(Holland and Vaughan, 1984; Hildner and Greer, 1990; Fessant, Pierret, and
Lantos, 1996). We thus find that the method essentially breaks down when
transiting from one cycle to the next. Only short-term extrapolations are then
possible, over time ranges that may be even shorter than 18 months. On the other
hand, in the course of a cycle, roughly during 5 years surrounding the maximum
(s = 10 months to 60 months), longer-term predictions can be considered, but
systematic biases appear for particularly high or low cycles. We conclude that
those limitations are mostly tied to the fact that the ML predictions are founded
on the use of the mean cycle, a single global average of all past cycles. The ML
correction term can only partly compensate adverse properties of the underlying
mean cycle:

• A fixed amplitude that leads to systematic biases in predictions
• A fixed duration, which leads to a temporal mismatch with the actual

times when the maximum and the transition to the next cycle is actually
occurring.

SOLA: MLarticle_V7_R2.tex; 15 February 2024; 1:55; p. 41



F.Clette, S. Jain and T.Podladchikova

• The fixed duration also produces a smoothing of the extrema of the cycle
and an elevation of the minimum level at the end of the cycle.

Earlier attempts tried to reduce those limitations, with limited gains. By
bringing all cycles to the same length, Niehuss, H.C. Euler, and Vaughan (1996)
and Fessant, Pierret, and Lantos (1996) reduced the third effect, which helps
to obtain a cycle profile more consistent with actual cycles. However, although
it is a bit more realistic, this single mean cycle cannot be representative of
the different rising and declining profiles of high and low cycles, and this mean
cycle has still a fixed length, which does not solve the first two limitations. By
also moving the initial node point from the starting minimum of the cycle to
its maximum, Fessant, Pierret, and Lantos (1996) indeed slightly reduces the
temporal mismatch at the end of the cycle, where it is maximum. However, as
the mean cycle still has a fixed declining time, the three above limitations still
largely remain.

Therefore, we conclude that improving the ML method and achieving a mean-
ingful gain in its predictive performance requires abandoning at least part of its
base principles. In order to go further while still using the past record of the
SN as single base input, at least three main ingredients must be included in the
prediction strategy, each addressing one of the three above limitations, namely:

• Using a base mean cycle with an amplitude that itself is predicted on
the base of the last observed SN, thus only including past cycles with
amplitudes similar to the predicted maximum.

• Taking into account the known relation between the rise time to the maxi-
mum and also of the cycle length with the amplitude of the cycle, i.e. the
so-called Waldmeier effect (Waldmeier, 1935)

• Using as template the actual shape of cycle in different amplitude ranges,
without mixing cycles of different amplitude.

However, such adaptations do not have much in common with the original ML
scheme, and must be considered as distinct methods that just belong to the same
general category of “climatology-based” prediction methods, as explained in our
introduction.

It turns out that such more advanced methods were implemented indepen-
dently a long time ago and have been in routine operational use over the past
decades, thus are also forming heritage standards against which other methods
can be compared, including the ML method. The first one is the Standard Curve
(SC) method by Waldmeier (1968), based on a set of averaged and interpolated
mean solar cycles covering the whole range of possible amplitudes, which was
created much earlier (Waldmeier, 1935, 1937). The other one is the Combined
Method (CM) introduced more recently by Denkmayr and Cugnon (1997). Be-
yond the adaptive derivation of a mean cycle of proper amplitude, this method
also uses a precursor parameter, the aa geomagnetic index, to obtain a prediction
of the next maximum when passing the end of the predicted cycle, and thus
when purely sunspot-based methods fail completely, like we saw here with the
ML method.
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The discussion of those other heritage methods and a throughout comparison
of their performance with the ML predictions go beyond the scope of this paper
and should become the topic of future articles submitting the other methods to
the same bulk bench-marking techniques as the one developed in this ML study.
In this perspective, all tools developed and trained here on the ML method will
prove invaluable for probing other methods in a fully equivalent way.
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